Advertisements
Advertisements
प्रश्न
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
उत्तर
`[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
= `[ 3 xx (3^2)^(n + 1) - 3^2 xx 3^(2n)]/[ 3 xx 3^(2n + 3) - (3^2)^(n + 1)]`
= `[ 3^( 1 + 2n + 2) - 3^( 2 + 2n )]/[3^(1 + 2n + 3) - 3^( 2n + 2 )]`
= `[ 3^( 3 + 2n ) - 3^( 2 + 2n )]/[3^(4 + 2n) - 3^( 2n + 2 )]`
= `[ 3^(2n)( 3^3 - 3^2 )]/[3^(2n)(3^4 - 3^2)]`
= `[ 27 - 9 ]/[ 81 - 9 ]`
= `18/72`
= `1/4`
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`