Advertisements
Advertisements
प्रश्न
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
उत्तर
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
⇒ 92a = `(root(3)(3^4))^(-6/"b") = (sqrt(3^3))^2`
⇒ (32)2a = `(3^(4xx1/3))^(-6/"b") = (3^(3xx1/2))^2`
⇒ 34a = `(3^1)^(-8/"b") = (3^1)^3`
⇒ 34a = `(-8)/"b" = 3`
⇒ 34a = 3 and `(-8)/"b"` = 3
⇒ 4a = 3 and b = `(-8)/(3)`
⇒ `"a" = (3)/(4) and "b" = (-8)/(3)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
If ax = b, by = c and cz = a, prove that : xyz = 1.
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1