Advertisements
Advertisements
प्रश्न
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
उत्तर
Let 2x = 3y = 12z = k
⇒ `2 = "k"^(1/x), 3 = "k"^(1/y), 12 = "k"^(1/z)`
Now , 12 = 2 x 2 x 3
⇒ `"k"^(1/z) = "k"^(1/x) xx "k"^(1/x) xx "k"^(1/y)`
⇒ `(1)/z = (1)/x + (1)/x + (1)/y`
⇒ `(1)/z = (2)/x + (1)/y`.
APPEARS IN
संबंधित प्रश्न
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
If ax = b, by = c and cz = a, prove that : xyz = 1.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1