Advertisements
Advertisements
प्रश्न
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
उत्तर
8 x 22x + 4 x 2x + 1 = 1 + 2x
⇒ 8 x `(2^x)^2` + 4 x 2x x 21 = 1 + 2x
⇒ 8 x `(2^x)^2` + 4 x 2x x 21 - 1 - 2x = 0
⇒ 8 x `(2^x)^2` + 2x x ( 8 - 1 ) - 1 = 0
⇒ 8 x `(2^x)^2` + 7( 2x ) - 1 = 0
⇒ 8y2 + 7y - 1 = 0 [ y = 2x ]
⇒ 8y2 + 8y - y - 1 = 0
⇒ 8y( y + 1 ) - 1( y + 1 ) = 0
⇒ ( 8y - 1 )( y + 1 ) = 0
⇒ 8y = 1 or y = - 1
⇒ y = `1/8` or y = -1
⇒ 2x = `1/8` or 2x = - 1
⇒ 2x = `1/2^3` or 2x = - 1
⇒ 2x = `2^-3` or 2x = - 1
⇒ x = - 3
[ ∵ 2x = - 1 is not possible. ]
APPEARS IN
संबंधित प्रश्न
Find x, if : 42x = `1/32`
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.