Advertisements
Advertisements
Question
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
Solution
ax = by = cz
So, ax = by ⇒ a =`"b"^(y/x) .....("Using" "a"^(1/"n") = root("n")("a"))`
by = cz ⇒ c = `"b"^(y/z) .....("Using" "a"^(1/"n") = root("n")("a"))`
and abc = 1
⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1
⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1
⇒ `"b"^(y/x + 1 + y/z)` = b° ......(Using a° = 1)
⇒ `y/x + 1 + y/z` = 0
Divide throughout by y.
⇒ `(1)/x + (1)/y + (1)/z` = 0
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1