Advertisements
Advertisements
Question
Solve `dy/dx+x sin 2 y=x^3 cos^2 y`
Solution
Given, `dy/dx+x sin 2 y=x^3 cos^2 y`
Dividing both sides by cos2x,
`Sec^2 x dy/dx+x sec^2x sin 2y=x^3`
`Sec^2 x dy/dx+2x tan y=x^3....................(1)`
Put tan y = v and differentiate w.r.t. x,
`Sec^2 x dy/dx=(dv)/dx`
Hence, from (1), we get `(dv)/dx+2v.x=x^3`
∴ `P=2x and Q=x^3`
∴` int p dx=int 2x dx =x^2`
∴ `I.F.= e^int "^(p dx) = e^int 2x dx=e^(x^2)`
∴ The solution is v ` e^(x^2)=int e^(x^2) x^3 dx+c`
To find the integral put `x^2=t, xdx=dt/2`
`∴I= inte^t.t. dt/2=1/2[te^t-int e^t.dt]..................` [By parts]
∴` I= 1/2 [te^t-e^t]=1/2e^t(t-1)=1/2e^"x^2 (x^2-1)`
∴ The solution is v `e^x^2=1/2 e^x"^2(x^2-1)+c`
∴ tan `y e x^2= 1/2 e^x"^2 (x^2-1)+c`
shaalaa.com
Runga‐Kutta Fourth Order Formula
Is there an error in this question or solution?