English

Find by Double Integration the Area Bounded by the Parabola ๐’š๐Ÿ=๐Ÿ’๐’™ and ๐’š=๐Ÿ๐’™โˆ’๐Ÿ’ - Applied Mathematics 2

Advertisements
Advertisements

Question

Find by double integration the area bounded by the parabola ๐’š๐Ÿ=๐Ÿ’๐’™ And ๐’š=๐Ÿ๐’™−๐Ÿ’ 

Solution

The parabola ๐‘ฆ2=4๐‘ฅ and the line ๐‘ฆ=2๐‘ฅ−4 intersect where (2๐‘ฅ−4)2=4๐‘ฅ 

∴ `4x^2-16x+16=4x`          ∴ `4x^2-20x+16=0` 

∴` x^2-5x+4=0`                ∴ `(x-4) (x-1)=0` 

∴` x=1,4`

When x = 1, y = 2 – 4 = -2; and when x = 4, y = 8 - 4 = 4. Thus, the points of intersection are A (1, -2) and B (4, 4).
Now, consider a strip parallel to x-axis. On this strip x varies from x = y2/4 to x = (y+4)/2. The strip then moves parallel to the x-axis from y = -2 to y = 4. 

∴` A= int_-2^4 int_(y^2)"^(y+4)/2 dxdy=int_-2^4 [x]_(y^2/4)^((y+4)/2) dy`    

=`int_-2^4 ((y+4)/2 - y^2/4)dy` 

= `1/4 int_-2^4(2y+8-y^2) dy` 

=`1/4 int_-2^4(2y+8-y^2)dy` 

=` 1/4 [y^2+8y-y^3/3]_-2^4` 

=`1/4[(16+32-64/3)-(4-16+8/3)]` 

=`1/4(60-24)` 

∴` A=9``

shaalaa.com
Application of Double Integrals to Compute Area
  Is there an error in this question or solution?
2018-2019 (December) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×