Advertisements
Advertisements
Question
Evaluate `int int(2xy^5)/sqrt(x^2y^2-y^4+1)dxdy`, where R is triangle whose vertices are (0,0),(1,1),(0,1).
Solution
let I =`int int(2xy^5)/sqrt(x^2y^2-y^4+1)dxdy`
Region of integration : Triangle whose vertices are (0,0),(1,1),(0,1)
The equation of lines from diagram are : y=1,x=y
0 ≤𝒙≤𝒚
𝟎≤𝒚≤𝟏
`therefore "I"=int_0^1int_0^y(2xy^5)/sqrt(x^2y^2-y^4+1)dxdy`
`=int_0^1int_0^y(2y^5x)/sqrt((1-y^4)+x^2y^2)dxdy`
`=int_0^1int_0^y(2y^5x)/sqrt((1-y^4)/y^2+x^2)1/ydxdy`
`=int_0^1 2y^4[sqrt((1-y^4)/y^2+x^2)]_0^ydy`
`=int_0^1 2y^4[1/y-sqrt(1-y^4)/y]dy`
`=2int_0^1 [y^3-sqrt(1-y^4)y^3]dy`
`=2[y^4/4+1/4(1-y^4)^(3/2)/(3/2)]_0^1`
`=2[1/4-1/4. 2/3]`
`therefore "I" = 1/6`
APPEARS IN
RELATED QUESTIONS
Find the area inside the circle r=a sin𝜽 and outside the cardioide r=a(1+cos𝜽 )
Evaluate `int int xy(x-1)dx dy` over the region bounded by 𝒙𝒚 = 𝟒,𝒚= 𝟎,𝒙 =𝟏 and 𝒙 = 𝟒
Use polar co ordinates to evaluate `int int (x^2+y^2)^2/(x^2y^2)` 𝒅𝒙 𝒅𝒚 over yhe area Common to circle `x^2+y^2=ax "and" x^2+y^2=by, a>b>0`
Find by double integration the area bounded by the parabola 𝒚𝟐=𝟒𝒙 And 𝒚=𝟐𝒙−𝟒