English

Evaluate โˆซ โˆซ X Y ( X โˆ’ 1 ) D X D Y Over the Region Bounded by ๐’™๐’š = ๐Ÿ’,๐’š= ๐ŸŽ,๐’™ =๐Ÿ and ๐’™ = ๐Ÿ’ - Applied Mathematics 2

Advertisements
Advertisements

Question

Evaluate `int int xy(x-1)dx  dy` over the region bounded by ๐’™๐’š = ๐Ÿ’,๐’š= ๐ŸŽ,๐’™ =๐Ÿ and ๐’™ = ๐Ÿ’

Sum

Solution

Let I = `int int xy(x-1)dx  dy`

Rectangular hyperbola : ๐’™๐’š=๐Ÿ’  Lines : ๐’™=๐Ÿ ,๐’™=๐Ÿ’ ,๐’š=๐ŸŽ

Intersection of line ๐’™ = ๐Ÿ and ๐’™๐’š = ๐Ÿ’ is (1,4).
Intersection of line ๐’™ = ๐Ÿ’ and ๐’™๐’š = ๐Ÿ’ is (4,1)

`therefore 0<=y<=x/4`

`1<=x<=4`

`therefore  "I" =int_1^4 int_0^(x/4)(x^2y-xy)dy  dx`

`=int_1^4[y^2/2x^2-(y^2x)/2]_0^(x/4)dx`

`=int_1^4(8-8/x)dx`

`=[8x-8logx]_1^4`

`therefore "I"=8(3-2log2)`

shaalaa.com
Application of Double Integrals to Compute Area
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×