Advertisements
Advertisements
Question
Solve by variation of parameter method `(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.
Solution
`(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.
Put D=`d/(dx)` `thereforeD^2y+3Dy+2y=0`
For complementary solution,
f(D)=0
`thereforeD^2+3D+2=0`
𝑫= −𝟏 ,−𝟐
`therefore y_c=c_1e^(x)+c_2e^(-2x)`
Particular integral is given by ,
`y_p=y_1p_1+y_2p_2`
where`p_1=int(-y_2x)/w dx`
`p_1=int(y_1x)/w dx`
`w=|(y_1,y_2),(y'_1,y'_2)|`
`therefore w=|(e^(-x),e^(-2x)),(-e^(-x),-2e^(-2x))|=-e^(-3x)`
`p_1=int(e^(-2x)e^(e^x))/e^(-3x) dx=inte^(e^x)e^xdx=inte^t dt=e^(e^x) ........{"Put" e^x=t=>e^xdx=dt}`
`p_2=int(e^(-2x))/e^(-3x)e^(e^x) dx=inte^(e^x)e^(2x) dx=int t e^t dt=e^x e^(e^x)-e^(e^x)`
`therefore y_p=e^x e^(e^x)-(e^x e^(e^x)-e^(e^x))e^(-2x)=e^(-2x) e^(e^x)`
The general solution of given differential eqn is given by ,
`y_g=y_c+y_p=c_1e^(-x)+c_2e^(-2x)+e^(-2x)e^(e^x)`
APPEARS IN
RELATED QUESTIONS
Show that `int_0^1(x^a-1)/logx dx=log(a+1)`
Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `
Solve by method of variation of parameters :`(D^2-6D+9)y=e^(3x)/x^2`
Solve by method of variation of parameters
`(d^2y)/dx^2+3 dy/dx+2y=e^(e"^x)`