Advertisements
Advertisements
Question
Solve by method of variation of parameters :`(D^2-6D+9)y=e^(3x)/x^2`
Solution
`(D^2-6D+9)y=e^(3x)/x^2`
For complementary solution ,
𝒇(𝑫)=𝟎
`therefore(D^2-6D+9)=0`
Roots are : D = 3 , 3 Real roots but repeatative.
The complementary solution of given diff. eqn is ,
`therefore y_c=(c_1+xc_2)e^(3x)`
For particular solution ,
By method of variation of parameters,
`y_p=y_1p_1+y_2p_2`
where `p_1=int(-y_2X)/wdx`
`p_2=int(-y_1X)/wdx`
`w=|(y_1,y_2),(y'_1,y'_2)|`
`w=|(e^(3x),xe^(3x)),(3e^(3x),e^(3x)+3xe^(3x))|=e^(6x)`
`p_1=int(-y_2X)/wdx=int(xe^(3x))/e^(6x).e^(3x)/x^2dx=int(-1)/xdx=-logx`
`p_2=int(-y_1X)/wdx=int(e^(3x))/e^(6x).e^(3x)/x^2dx=int(1)/x^2dx=(-1)/x`
The particular integral of given diff. eqn is given by,
`thereforey_p=-e^(3x)logx-e^(3x)=-e^(3x)(logx+1)`
The general solution of given diff. eqn is given by ,
`y_g=y_c+y_p=(c_1+xc_2)e^(3x)=-e^(3x)(logx+1)`
APPEARS IN
RELATED QUESTIONS
Show that `int_0^1(x^a-1)/logx dx=log(a+1)`
Solve by variation of parameter method `(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.
Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `
Solve by method of variation of parameters
`(d^2y)/dx^2+3 dy/dx+2y=e^(e"^x)`