English

Given ∫ X 0 1 X 2 + a 2 D X = 1 a Tan − 1 ( X a ) Using Duis Find the Value of ∫ X 0 1 X 2 + a 2 - Applied Mathematics 2

Advertisements
Advertisements

Question

Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `

Sum

Solution

`int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`

Differentiate w.r.t a , taking ‘a’ as parameter

`d/(da)int_0^x 1/(x^2+a^2) dx=d/(da)[1/atan^(-1)(x/a)]`

Applying D.U.I.S rule,

D.U.I.S rule says that if function and its partial derivative is continuous then we can apply differential operator in the integral operator by converting it into partial derivative taking one parameter fro function.

`int_0^xdel/(dela) 1/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`

`int_0^x(2a^2)/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`

`int_0^x(dx)/(x^2+a^2)^2 dx=-1/(2a^3)tan^(-1)  x/a+x/(2a^2(x^2+a^2)`

shaalaa.com
Method of Variation of Parameters
  Is there an error in this question or solution?
2017-2018 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×