English

Use Polar Co Ordinates to Evaluate โˆซ โˆซ ( X 2 + Y 2 ) 2 X 2 Y 2 ๐’…๐’™ ๐’…๐’š Over Yhe Area Common to Circle X 2 + Y 2 = a X and X 2 + Y 2 = B Y , a > B > 0 - Applied Mathematics 2

Advertisements
Advertisements

Question

Use polar co ordinates to evaluate `int int (x^2+y^2)^2/(x^2y^2)` ๐’…๐’™ ๐’…๐’š over yhe area Common to circle `x^2+y^2=ax  "and" x^2+y^2=by, a>b>0`

Sum

Solution

Let I = `int int (x^2+y^2)^2/(x^2y^2)` ๐’…๐’™ ๐’…๐’š 
Region of integration is : Area common to the circle
`x^2+y^2=ax  "and" x^2+y^2=by

To change the Cartesian coordinates to polar coordinates
Put x= r cos๐œฝ and y = r sin ๐œฝ
Circles : r=acos ๐œฝ ๐’‚๐’๐’… r=asin ๐œฝ
The function becomes : f(x,y) `= (x^2+y^2)^2/(x^2y^2)=r^4/(r^4sin^2thetacos^2theta)=4/(sin^2 2theta)=f(r,theta)`

Intersection of both circles is at angle = `tan^(-1)  a/b`

Divide the region into two equal halves.

For one region ,
๐ŸŽ≤๐’“≤๐’ƒ๐’”๐’Š๐’๐œฝ
๐ŸŽ≤๐œฝ≤๐œถ
For another region ,
๐ŸŽ≤๐’“≤๐’‚๐’„๐’๐’” ๐œฝ
๐œถ≤๐œฝ≤`pi/2`

`therefore "I"=int_0^\alphaint_0^(bsintheta)(4rdrd theta)/(sin^2 2theta) + int_0^(acostheta) int_alpha^(pi/2)(4rdrd theta)/(sin^2 2theta)`

`therefore "I"=int_0^alpha 4/(sin^2 2theta)[r^2/2]_0^(bsin theta)d theta+int_0^(pi/2)4/(sin^2 2theta)[r^2/2]_0^(acostheta)d theta`

`=1/2b^2int_0^alphasec^2theta d theta+a^2/2int_alpha^(pi/2)cosec^2theta d theta`

`=1/2b^2tanalpha+a^2/2cotalpha`

`=(ab)/2+(ab)/2`

∴ I = ab

shaalaa.com
Application of Double Integrals to Compute Area
  Is there an error in this question or solution?
2017-2018 (December) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×