Advertisements
Advertisements
Question
Solve `ydx+x(1-3x^2y^2)dy=0`
Solution
`ydx+x(1-3x^2y^2)dy=0` …………….(1)
Compare the given eqn with Mdx + Ndy=0
∴ M = y `therefore N=x(1-3x^2y^2)`
`(delM)/(dely)=1` `(delN)/(delx)=1-9x^2y^2`
`(delM)/(dely)!=(delN)/(delx)`
Hence the given diff. eqn is not exact.
But the given diff. eqn is in the form of yf(xy)dx + xf(xy)dy = 0
Integrating factor = `1/(Mx-Ny)=1/(xy-xy+3x^3y^3)=1/(3x^3y^3)`
Multiply the I.F. to eqn (1),
`1/(3x^3y^2)dx+[1/(3x^2y^3)-1/y]dy=0`
`thereforeM_1=1/(3x^3y^2) N_1=[1/(3x^2y^3)-1/y]`
Now this diff. eqn is exact.
The solution of given diff. eqn is given by,
`intMdx+int[N-del/(dely)Mdx]dy=c`
`intM_1dx=int1/(3x^3y^2)dx=(-1)/(6y^2x^2)`
`del/(dely)intM_1dx=1/(3x^2y^3`
`int[N_1-del/(dely)intM_1dx]dy=int[1/(3x^2y^3)-1/y-1/(3x^2y^3)]dy`
`=int(-1)/ydy=-logy`
`therefore (-1)/(6y^2x^2)-logy=c`