English

Find the Mass of a Lamina in the Form of an Ellipse X 2 a 2 + Y 2 B 2 = 1 , If the Density at Any Point Varies as the Product of the Distance from the The Axes of the Ellipse. - Applied Mathematics 2

Advertisements
Advertisements

Question

Find the mass of a lamina in the form of an ellipse `x^2/a^2+y^2/b^2=1`, If the density at any point varies as the product of the distance from the
The axes of the ellipse.

Sum

Solution

Mass of lamina is given by , M = ∫∫๐’“ ๐’…๐’™ ๐’…๐’š
r is the density function r =k xy

Ellipse eqn is : `x^2/a^2+y^2/b^2=1`

`0<=y<=bsqrt(a^2-x^2)/a`

๐ŸŽ ≤ ๐’™ ≤ ๐’‚

`thereforeM=4int_0^aint_0^(bsqrt(a^2-x^2)/a)kxydydx`

`=4kint_0^ax[y^2/2]_0^(bsqrt(a^2-x^2)/a)dx`

`=2kint_0^axb^2/a^2(a^2-x^2)dx`

`=(2kb^2)/a^2int_0^a(a^2x-x^3)dx`

`=(2kb^2)/a^2[(a^2x^2)/2-x^4/4]_0^a`

`thereforeM=(ka^2b^2)/2`

 

shaalaa.com
Application of Double Integrals to Compute Mass
  Is there an error in this question or solution?
2017-2018 (December) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×