English

Solve the Following Equation and Also Check Your Result: 7 X − 1 4 − 1 3 ( 2 X − 1 − X 2 ) = 10 3 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation and also check your result:

\[\frac{7x - 1}{4} - \frac{1}{3}\left( 2x - \frac{1 - x}{2} \right) = \frac{10}{3}\]
Sum

Solution

\[\frac{7x - 1}{4} - \frac{1}{3}(2x - \frac{1 - x}{2}) = \frac{10}{3}\]
\[\text{ or }\frac{7x - 1}{4} - \frac{2x}{3} + \frac{1 - x}{6} = \frac{10}{3}\]
\[\text{ or }\frac{21x - 3 - 8x + 2 - 2x}{12} = \frac{10}{3}\]
\[\text{ or }11x - 1 = 40 [\text{ Multiplying both sides by }12]\]
\[\text{ or }11x = 40 + 1\]
\[\text{ or }x = \frac{41}{11}\]
\[\text{ Thus, }x = \frac{41}{11}\text{ is the solution of the given equation . }\]
\[\text{ Check: }\]
\[\text{ Substituting }x = \frac{41}{11}\text{ in the given equation, we get: }\]
\[\text{ L . H . S . }= \frac{7 \times \frac{41}{11} - 1}{4} - \frac{1}{3}(2 \times \frac{41}{11} - \frac{1 - \frac{41}{11}}{2}) = \frac{276}{44} - \frac{82}{33} + \frac{- 30}{66} = \frac{10}{3}\]
\[\text{ R . H . S .} = \frac{10}{3}\]
\[ \therefore \text{ L . H . S . = R . H . S . for }x = \frac{41}{11}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Linear Equation in One Variable - Exercise 9.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 9 Linear Equation in One Variable
Exercise 9.2 | Q 21 | Page 12

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×