Advertisements
Advertisements
Question
Solve the following quadratic equations by factorization:
\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]
Solution
\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]
\[ \Rightarrow 9 x^2 - 6 b^2 x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]
\[ \Rightarrow 9 x^2 + 3( a^2 - b^2 )x - 3\left( a^2 + b^2 \right)x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]
\[ \Rightarrow 3x\left[ 3x + \left( a^2 - b^2 \right) \right] - \left( a^2 + b^2 \right)\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]
\[ \Rightarrow \left[ 3x - \left( a^2 + b^2 \right) \right]\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]
\[ \Rightarrow 3x - \left( a^2 + b^2 \right) = 0 or 3x + \left( a^2 - b^2 \right) = 0\]
\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or }x = - \frac{a^2 - b^2}{3}\]
\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or } x = \frac{b^2 - a^2}{3}\]
Hence, the factors are \[\frac{a^2 + b^2}{3}\] and \[\frac{b^2 - a^2}{3}\].
APPEARS IN
RELATED QUESTIONS
The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
Solve for x
`(x - 1)/(2x + 1) + (2x + 1)/(x - 1) = 2, "where x" != -1/2, 1`
A two digits number is such that the product of the digits is 12. When 36 is added to the number, the digits inter change their places determine the number.
An aeroplane left 50 minutes later than its scheduled time, and in order to reach the destination, 1250 km away, in time, it had to increase its speed by 250 km/hr from its usual speed. Find its usual speed.
A pole has to be erected at a point on the boundary of a circular park of diameter 13 meters in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 meters. Is it the possible to do so? If yes, at what distances from the two gates should the pole be erected?
Solve the following quadratic equations by factorization:
\[3\left( \frac{3x - 1}{2x + 3} \right) - 2\left( \frac{2x + 3}{3x - 1} \right) = 5; x \neq \frac{1}{3}, - \frac{3}{2}\]
Write the sum of real roots of the equation x2 + |x| − 6 = 0.
Solve equation using factorisation method:
`x + 1/x = 2.5`
If an integer is added to its square the sum is 90. Find the integer with the help of a quadratic equation.
The speed of a boat in still water is 11 km/ hr. It can go 12 km up-stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream