Advertisements
Advertisements
प्रश्न
Solve the following quadratic equations by factorization:
\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]
उत्तर
\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]
\[ \Rightarrow 9 x^2 - 6 b^2 x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]
\[ \Rightarrow 9 x^2 + 3( a^2 - b^2 )x - 3\left( a^2 + b^2 \right)x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]
\[ \Rightarrow 3x\left[ 3x + \left( a^2 - b^2 \right) \right] - \left( a^2 + b^2 \right)\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]
\[ \Rightarrow \left[ 3x - \left( a^2 + b^2 \right) \right]\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]
\[ \Rightarrow 3x - \left( a^2 + b^2 \right) = 0 or 3x + \left( a^2 - b^2 \right) = 0\]
\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or }x = - \frac{a^2 - b^2}{3}\]
\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or } x = \frac{b^2 - a^2}{3}\]
Hence, the factors are \[\frac{a^2 + b^2}{3}\] and \[\frac{b^2 - a^2}{3}\].
APPEARS IN
संबंधित प्रश्न
Find two numbers whose sum is 27 and product is 182.
Solve the following quadratic equations by factorization:
`(x+3)/(x+2)=(3x-7)/(2x-3)`
If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?
Solve of the following equations, giving answer up to two decimal places.
3x2 – x – 7 =0
Solve:
(a + b)2x2 – (a + b)x – 6 = 0; a + b ≠ 0
Solve each of the following equations by factorization:
`9/2x=5+x^2`
Solve the following quadratic equations by factorization:
`(2x – 3)^2 = 49`
Solve the following quadratic equation by factorisation.
\[6x - \frac{2}{x} = 1\]
Solve the following equation:
`("x" + 1)/("x" - 1) - ("x" - 1)/("x" + 1) = 5/6 , "x" ≠ -1,1`
Solve the following equation by factorization
3x2 – 5x – 12 = 0