Advertisements
Advertisements
प्रश्न
If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?
उत्तर
Let the first pipe takes x hours to fill the reservoir. Then the second pipe will takes (x + 10) hours to fill the reservoir.
Since, the faster pipe takes x hours to fill the reservoir.
Therefore, portion of the reservoir filled by the faster pipe in one hour = 1/x
So, portion of the reservoir filled by the faster pipe in 12 hours = 12/x
Similarly,
Portion of the reservoir filled by the slower pipe in 12 hours `=12/(x + 10)`
It is given that the reservoir is filled in 12 hours.
So,
`12/x+12/(x+10)=1`
`(12(x+10)+12x)/(x(x+10))=1`
12x + 120 + 12x = x2 + 10x
x2 + 10x - 24x - 120 = 0
x2 - 14x - 120 = 0
x2 - 20x + 6x - 120 = 0
x(x - 20) + 6(x - 20) = 0
(x - 20)(x + 6) = 0
x - 20 = 0
x = 20
Or
x + 6 = 0
x = -6
But, x cannot be negative.
Therefore, when x = 20then
x + 10 = 20 + 10 = 30
Hence, the second pipe will takes 30hours to fill the reservoir.
APPEARS IN
संबंधित प्रश्न
Find the roots of the following quadratic equation by factorisation:
`2x^2 – x + 1/8 = 0`
Find the consecutive even integers whose squares have the sum 340.
The sum of two numbers is 18. The sum of their reciprocals is 1/4. Find the numbers.
Solve the following quadratic equations by factorization:
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}; x \neq 3, 5\]
If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 +bx + 1 = 0 having real roots is
Solve the following equation: `1/("x" - 1) + 2/("x" - 1) = 6/"x" , (x ≠ 0)`
Five years ago, a woman’s age was the square of her son’s age. Ten years later her age will be twice that of her son’s age. Find:
The age of the son five years ago.
Solve the equation:
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`.
Solve the following equation by factorization
`(2)/(3)x^2 - (1)/(3)x` = 1
A boat can cover 10 km up the stream and 5 km down the stream in 6 hours. If the speed of the stream is 1.5 km/hr. find the speed of the boat in still water.