Advertisements
Advertisements
प्रश्न
If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?
उत्तर
Let the first pipe takes x hours to fill the reservoir. Then the second pipe will takes (x + 10) hours to fill the reservoir.
Since, the faster pipe takes x hours to fill the reservoir.
Therefore, portion of the reservoir filled by the faster pipe in one hour = 1/x
So, portion of the reservoir filled by the faster pipe in 12 hours = 12/x
Similarly,
Portion of the reservoir filled by the slower pipe in 12 hours `=12/(x + 10)`
It is given that the reservoir is filled in 12 hours.
So,
`12/x+12/(x+10)=1`
`(12(x+10)+12x)/(x(x+10))=1`
12x + 120 + 12x = x2 + 10x
x2 + 10x - 24x - 120 = 0
x2 - 14x - 120 = 0
x2 - 20x + 6x - 120 = 0
x(x - 20) + 6(x - 20) = 0
(x - 20)(x + 6) = 0
x - 20 = 0
x = 20
Or
x + 6 = 0
x = -6
But, x cannot be negative.
Therefore, when x = 20then
x + 10 = 20 + 10 = 30
Hence, the second pipe will takes 30hours to fill the reservoir.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`1/(x-2)+2/(x-1)=6/x` , x ≠ 0
A passenger train takes 2 hours less for a journey of 300 km if its speed is increased by 5 km/hr from its usual speed. Find the usual speed of the train.
Solve the following quadratic equations by factorization:\[\frac{1}{x - 3} + \frac{2}{x - 2} = \frac{8}{x}; x \neq 0, 2, 3\]
Solve the following quadratic equations by factorization: \[2 x^2 + ax - a^2 = 0\]
Solve the following quadratic equations by factorization:
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}; x \neq 3, 5\]
The present age of the mother is square of her daughter's present age. 4 years hence, she will be 4 times as old as her daughter. Find their present ages.
In each of the following, determine whether the given values are solution of the given equation or not:
2x2 - x + 9 = x2 + 4x + 3; x = 2, x = 3
Solve the following equation by factorization
`(x + 2)/(x + 3) = (2x - 3)/(3x - 7)`
In an auditorium, the number of rows are equal to the number of seats in each row.If the number of rows is doubled and number of seats in each row is reduced by 5, then the total number of seats is increased by 375. How many rows were there?
Ritu bought a saree for Rs. 60x and sold it for Rs. (500 + 4x) at a loss of x%. Find the cost price.