Solve the following system of equations by cross-multiplications method.
a(x+y)+b(x–y)=a2–ab+b2
a(x+y)–b(x–y)=a2+ab+b2
The given system of equations can be rewritten as
ax+bx+ay–by–(a2–ab+b2)=0
⇒(a+b)x+(a–b)y–(a2–ab+b2)=0….(1)
⇒(a–b)x+(a+b)y–(a2+ab+b2)=0…(2)
Now, by cross-multiplication method, we have
⇒x(a-b)×{-(a2+ab+b2)}-(a+b)×{-(a2-ab+b2)}=-y(a+b)×{-(a2+ab+b2)}-(a-b)×{-(a2-ab+b2)}=1(a+b)×(a+b)-(a-b)(a-b)
⇒x-(a-b)(a2+ab+b2)+(a+b)(a2-ab+b2)=-y-(a+b)(a2+ab+b2)+(a-b)(a2-ab+b2)=1(a+b)2-(a-b)2
⇒x-(a3-b3)+(a3+b2)=-y-a3-2a2b-2ab2-b3+a3-2a2b+2ab2-b3=1a2+2ab+b2-a2+2ab-b2
⇒x2b3=-y-4a2b-2b3=14ab
⇒x2b3=-y-2b(2a2+b2)=14ab
⇒x2b3=14ab⇒x=b22a
and and-y-2b(2a2+b2)=14ab⇒y=2a2+b22a
Hence, the solution is x=b22a,y=2a2+b22a