Advertisements
Advertisements
Question
Solve for x: (x2 - 5x)2 - 7(x2 - 5x) + 6 = 0; x ∈ R.
Solution
Given equation
(x2 - 5x)2 - 7(x2 - 5x) + 6 = 0
Put x2 - 5x = y
∴ The given equation becomes
y2 - 7y + 6 = 0
⇒ y2 - 6y - y + 6 = 0
⇒ y(y - 6) -1(y - 6) = 0
⇒ y = 1, 6
But x2 - 5x = y
∴ x2 - 5x = 1
x2 - 5x - 1 = 0
Here a = 1, b = -5, c = -1
∴ x = `(-b ± sqrt(b^2 - 4ac))/(2a)`
x = `(-(-5) ± sqrt(25 + 4))/(2)`
x = `(5 ± sqrt(29))/(2)`
x2 - 5x = 6
⇒ x2 - 5x - 6 = 0
⇒ x2 - 6x + x - 6 = 0
⇒ x(x - 6) +1(x - 6) = 0
⇒ (x - 6) (x + 1) = 0
⇒ x = 6 or x = -1
Hence, the roots are -1, 6, `(5 ± sqrt(29))/(2)`.
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equation for x :
9x2 − 6b2x − (a4 − b4) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(2k + 1)x2 + 2(k + 3)x + (k + 5) = 0
If 1 is a root of the quadratic equation 3x2 + ax – 2 = 0 and the quadratic equation a(x2 + 6x) – b = 0 has equal roots, find the value of b ?
Solve the following quadratic equation using formula method only
`3"x"^2 + 2 sqrt 5x - 5 = 0 `
Solve the following quadratic equation using formula method only
x2 - 4x - 1 = 0
(3x - 5)(2x + 7) = 0
In each of the following, determine whether the given numbers are roots of the given equations or not; x2 – 5x + 6 = 0; 2, – 3
Find the values of k for which each of the following quadratic equation has equal roots: x2 – 2kx + 7k – 12 = 0 Also, find the roots for those values of k in each case.
If the roots of px2 + qx + 2 = 0 are reciprocal of each other, then:
Find whether the following equation have real roots. If real roots exist, find them.
`1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`