Advertisements
Advertisements
Question
Solve the following differential equation:
`("d"^2y)/("d"x^2) - 4("d"y)/("d"x) + 4y = 0`
Solution
The auxiliary equations A.E is m2 – 4m + 4 = 0
(m – 2)2 = 0
m = 2, 2
Roots are real and equal
The complementary function (C.F) is (Ax + B)e2x
The general solution is y = (Ax + B)e2x
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
(D2 + 2D + 3)y = 0
Solve the following differential equation:
(4D2 + 4D – 3)y = e2x
Solve the following differential equation:
`("d"^2y)/("d"x^2) + 16y = 0`
Solve the following differential equation:
(D2 – 3D + 2)y = e3x which shall vanish for x = 0 and for x = log 2
Solve the following differential equation:
(D2 – 10D + 25) y = 4e5x + 5
Solve the following differential equation:
Suppose that the quantity demanded Qd = `13 - 6"p" + 2 "dp"/"dt" + ("d"^2"p")/("dt"^2)` and quantity supplied Qs = `- 3 + 2"p"` where p is the price. Find the equilibrium price for market clearance
Choose the correct alternative:
The complementary function of (D2 + 4) y = e2x is
Choose the correct alternative:
The particular integral of the differential equation f(D) y = eax where f(D) = (D – a)2
Choose the correct alternative:
The complementary function of `("d"^2y)/("d"x^2) - ("d"y)/("d"x) = 0` is
Suppose that Qd = `30 - 5"P" + 2 "dP"/"dt" + ("d"^2"P")/("dt"^2)` and Qs = 6 + 3P. Find the equilibrium price for market clearance