Advertisements
Advertisements
Question
Solve the following differential equation:
x2 dy + y(x + y) dx = 0
Sum
Solution
We have, `x^2dy + y(x + y)dx = 0`
`x^2/y dy/dx + (x + y) = 0`
`x^2/y dy/dx + x/y + 1 = 0` ...(i)
Put y = vx
⇒ `(dy)/(dx) = V + x(dV)/(dx)`
From eq (i), we get
`1/(V^2)(V + x(dV)/(dx)) + 1/V + 1 = 0`
⇒ `x(dV)/(dx) = -(2V + V^2)`
⇒ `1/2[1/V - 1/(V + 2)]dV = -(dx)/x`
On integrating both sides, we get
⇒ `1/2(log V - log V + 2) = -log x + C_1`
⇒ `1/2 log(V/(V + 2))= -log x + C_1`
⇒ `log (V/(V + 2)) = -2 log x + log k`
where `k = e^(2C_1)`
⇒ `log(V/(V + 2))= log(k/x^2)`
⇒ `V/(V + 2) = k/x^2`
Substituting V = `y/x`, we get
`y/(2x + y) = k/x^2`
⇒ `x^2y = C^2(2x + y) "where" k = C^2`
shaalaa.com
Is there an error in this question or solution?