English

Solve the following quadratic equation: (2 + i) x2 – (5 – i) x + 2(1 – i) = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following quadratic equation:

(2 + i) x2 – (5 – i) x + 2(1 – i) = 0

Sum

Solution

Given equation is

(2 + i) x2 – (5 – i) x + 2(1 – i) = 0

Comparing with ax2 + bx + c = 0, we geta

a = 2 + i, b = – (5 –  i), c = 2(1 - i)

Discriminant = b2 –  4ac

= [–  5 –  i)]2 –  4 x (2 + i) x 2(1 –  i)

= 25 –  10i + i2 –  8(2 + i) (1 - i)

= 25 –  10i + i2 –  8(2 –  2i + i –  i2)

= 25 –  10i –  1 - 8(2 - i + 1)          ...[∵ i2 = – 1]

= 25 – 10i – 1 – 16 + 8i – 8

= – 2i

So, the given equation has complex roots.
These roots are given by

x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`

= `(-[-(5 - "i")] ± sqrt(-2"i"))/(2(2 + "i")`

= `((5 - "i") ± sqrt(-2"i"))/(2(2 + "i")`

Let `sqrt(-2"i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
– 2i = a2 + b2i2 + 2abi
∴ 0 – 2i = (a2 – b2) + 2abi      ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = – 2

∴ a2 – b2 = 0 and b = `-1/"a"`

∴ `"a"^2 - ((-1)/"a")^2` = 0

∴ `"a"^2 - 1/"a"^2` = 0

∴ a4 – 1 = 0
∴ (a2 – 1)(a2 + 1) = 0
∴ a2 = 1 or a2 = – 1
But a ∈ R
∴ a2 ≠ – 1
∴ a2 = 1
∴ a = ± 1
When a = 1, b = – 1
When a = – 1, b = 1
∴ `sqrt(-2"i")` = ±  (1 – i)

∴ x = `((5 - "i") ± (1 - "i"))/(2(2 + "i")`

∴ x = `(5 - "i" + 1 - "i")/(2(2 + "i")) or x = (5 - "i" - 1 + "i")/(2(2 + "i")`

∴ x =  `(6 - 2"i")/(2(2 + "i")) or x = 4/(2(2 + "i")`

∴ x =  `(2(3 - "i"))/(2(2 + "i")) or x = 2/(2 + "i")`

∴ x =  `(3 - "i")/(2 + "i") or  x = (2(2 - "i"))/((2 + "i")(2 - "i")`

∴ x = `((3 - "i")(2 - "i"))/((2 + "i")(2 - "i")) or x = (2(2 - "i"))/(4 - "i"^2)`

∴ x =  `(6 - 5"i" + "i"^2)/(4 - "i"^2) or x = (4 - 2"i")/(4 - "i"^2)`

∴ x = `(5 - 5"i")/5 or x = (4 - 2"i")/5`    ...[∵ i2 = – 1]

∴ x = 1 – i or x = `4/5 - (2"i")/5`.

shaalaa.com
Solution of a Quadratic Equation in Complex Number System
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.2 [Page 40]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×