Advertisements
Advertisements
Question
Solve the following simultaneous equation.
`1/(3x + y) + 1/(3x - y) = 3/4; 1/(2(3x + y)) - 1/(2(3x - y)) = -1/8`
Solution
Given:
`1/(3x + y) + 1/(3x - y) = 3/4; 1/(2(3x + y)) - 1/(2(3x - y)) = -1/8`
let `1/(3x + y) = a "and" 1/(3x − y) = b`
Then,
a + b = `3/4`
⇒ 4a + 4b = 3 ...(I)
Similarly,
`a/2 − b/2 = (-1)/8`
⇒ `(a − b)/2 = (-1)/8`
⇒ `a − b = (− 2)/8`
⇒ `a − b = (−1)/4`
⇒ 4a − 4b = −1 ...(II)
Adding I and II we get,
4a + 4b = 3
+ 4a − 4b = −1
8a = 2
a = `2/8`
a = `1/4`
Substituting the value of a in I we get,
4 × `1/4` + 4b = 3
4b = 2
b = `2/4 ⇒ 1/2`
Then,
`1/(3x + y) = 1/4`
3x + y = 4 ...(III)
`1/(3x - y) = 1/2`
3x − y = 2 ...(IV)
Adding (III) and (IV) we get,
3x + y = 4
+ 3x − y = 2
6x = 6
x = 1
Substituting x = 1 in (III) we get,
3 × 1 + y = 4
y = 1
Thus, x = 1 and y = 1