Advertisements
Advertisements
Question
Subtract the second polynomial from the first.
`2x^2 + 3x + 5 ; x^2 -2x + 3`
Solution
`(2x^2 + 3x + 5) - (x^2 -2x + 3)`
`= 2x^2 + 3x + 5 -x^2 + 2x - 3`
`= 2x^2 - x^2 + 3x + 2x + 5- 3`
`= x^2 + 5x + 2`
APPEARS IN
RELATED QUESTIONS
The tens and units place of a two digit number is m and n respectively. Write the polynomial which represents the two digit number.
Add the given polynomial.
`-7m^4 +5m^3 + sqrt2 ; 5m^4 - 3m^3 + 2m^2 + 3m - 6`
Subtract the second polynomial from the first.
`x^2 - 9x + sqrt 3 ; -19x + sqrt 3 +7x^2`
Subtract the second polynomial from the first.
`2ab^2 + 3a^2b - 4ab ; 3ab - 8ab^2 + 2a^2b`
Multiply the given polynomial.
`2x ; x^2 - 2x - 1`
Multiply the given polynomial.
`x^5 - 1 ; x^3 +2x^2 + 2`
Multiply the given polynomial.
`2y + 1 ; y^2 - 2y^3 + 3y`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`5x^5 + 4x^4 - 3x^3 + 2x^2 +2;x^2-x`
Subtract the second polynomial from the first.
`5x^2 - 2y + 9 ; 3x^2 + 5y - 7`
Simplify.
(8m2 + 3m − 6) − (9m − 7) + (3m2 − 2m + 4)