English

Sum: An element with density 2.8 g cm–3 forms a f.c.c. unit cell with edge length 4 x 10–8 cm. Calculate the molar mass of the element. - Chemistry

Advertisements
Advertisements

Question

An element with density 2.8 g cm–3 forms a f.c.c. unit cell with edge length 4 x 10–8 cm. Calculate the molar mass of the element.

(Given : NA = 6.022 x 1023 mol –1)

Sum

Solution

Density of f.c.c. unit cell = 2.8 g cm-3

Edge length of f.c.c unit cell = 4 x 10-8 cm

NA = 6.022 x 1023 mol-1

Molar mass of the element = ?

For f.c.c. unit cell, Z = 4

Substituting the values in the equation:

`rho=(ZxxM)/(a^3xxN_0)`

`d = (z  xx M ) /(N_A xx a^3)`

m =`(N_A xx a^3 xx d)/Z`

`(2.8  "g cm"^3 xx (4 xx 10^(-8)"cm")^3 xx 6.022 xx10^23)/4`

⇒ M = 2.8 x 16 x 10-1 x 6.022 

=26.98g mol-1  ≅ 27 g mol-1 

Therefore, the molar mass of the element is 26.98 gmol-1 .

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

An element with density 10 g cm−3 forms a cubic unit cell with edge length of 3 × 10−8 cm. What is the nature of the cubic unit cell if the atomic mass of the element is 81 g mol−1?


An element crystallizes in a f.c.c. lattice with a cell edge of 250 pm. Calculate the density if 300 g of this element contains 2 × 1024 atoms. 


Silver crystallises in fcc lattice. If edge length of the cell is 4.07 × 10−8 cm and density is 10.5 g cm−3, calculate the atomic mass of silver


A metal crystallises into two cubic faces namely face centered (FCC) and body centered (BCC), whose unit cell edge lengths are 3.5 Å and 3.0 Å respectively. Find the ratio of the densities of FCC and BCC.


An element with density 11.2 g cm–3 forms a f.c.c. lattice with edge length of 4 × 10–8 cm.
Calculate the atomic mass of the element.
(Given : NA = 6.022 × 1023 mol–1)


An element crystallizes in fcc lattice with a cell edge of 300 pm. The density of the element is 10.8 g cm-3. calculate the number of atoms in 108 g  of the element.


An element crystallizes in fcc lattice with a cell edge of 300 pm. The density of the element is 10.8 g cm−3. Calculate the number of atoms in 108 g of the element.


A unit cell of NaCl has 4 formula units. Its edge length is 0.50 nm. Calculate the density if molar mass of NaCl = 58.5 g/mol.


Crystalline CsCl has density 3.988 g cm-3. The volume occupied by single CsCl pair in the crystal will be ______.
(Molar mass CsCl = 168.4 g/mol)


A unit cell of sodium chloride has four formula units. The edge length of the unit cell is 0.564 nm. The density of sodium chloride is ______ g/cm3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×