Advertisements
Advertisements
Question
Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function
`f(x) = {{:(k, 200 ≤ x ≤ 600),(0, "otherwise"):}`
Find the distribution function
Solution
`f(x) = int_-oo^x f(u) "d"u`
Case 1:
x < 200
`f(x) = int_-oo^x f(u) "d"u` = 0
Case 2:
200 ≤ x ≤ 600
`f(x) = int_-oo^x f(u) "d"u`
= `int_-oo^200 f(u) "d"u + int_200^x f(u) "d"u`
= `0 + k int_200^x "d"u`
= `1/400 [u]_200^x`
= `1/400 (x - 200)`
= `x/400 - 1/2`
Case 3:
x > 600
`f(x) = int_oo^x f(u) "d"u`
= `int_-oo^200 f(u) "d"u + int_200^600 f(u) "d"u + int_600^x f(u) "d"u`
= `0 + k int_200^600 "d"u + 0`
= `1/400 [u]_200^600`
= `400/40`
= 1
`f(x) = {{:(0",", "for" x < 200), (x/400 - 1/2",", "for" 200 ≤x ≤ 600),(1",", "for" x > 600):}`
APPEARS IN
RELATED QUESTIONS
The probability density function of X is given by
`f(x) = {{:(kx"e"^(-2x), "for" x > 0),(0, "for" x ≤ 0):}`
Find the value of k
The probability density function of X is `f(x) = {(x, 0 < x < 1),(2 - x, 1 ≤ x ≤ 2),(0, "otherwise"):}`
Find P(1.2 ≤ X < 1.8)
Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function
`f(x) = {{:(k, 200 ≤ x ≤ 600),(0, "otherwise"):}`
Find the value of k
Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function
`f(x) = {{:(k, 200 ≤ x ≤ 600),(0, "otherwise"):}`
Find the probability that daily sales will fall between 300 litres and 500 litres?
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find the value of k
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find P(X < 3)
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find P(5 ≤ X)
If X is the random variable with probability density function f(x) given by,
`f(x) = {{:(x + 1",", -1 ≤ x < 0),(-x +1",", 0 ≤ x < 1),(0, "otherwise"):}`
then find the distribution function F(x)
If X is the random variable with probability density function f(x) given by,
`f(x) = {{:(x + 1",", -1 ≤ x < 0),(-x +1",", 0 ≤ x < 1),(0, "otherwise"):}`
then find P(– 0.5 ≤ x ≤ 0.5)
If X is the random variable with distribution function F(x) given by,
F(x) = `{{:(0",", - oo < x < 0),(1/2(x^2 + x)",", 0 ≤ x ≤ 1),(1",", 1 ≤ x < oo):}`
then find P(0.3 ≤ X ≤ 0.6)
Choose the correct alternative:
Let X be random variable with probability density function
`f(x) = {(2/x^3, x ≥ 1),(0, x < 1):}`
Which of the following statement is correct?
Choose the correct alternative:
If the function f(x) = `1/12` for a < x < b, represents a probability density function of a continuous random variable X, then which of the following cannot be the value of a and b?
Choose the correct alternative:
If `f(x) = {{:(2x, 0 ≤ x ≤ "a"),(0, "otherwise"):}` is a probability density function of a random variable, then the value of a is