English

The 19th Term of an A.P. is Equal to Three Times Its Sixth Term. If Its 9th Term is 19, Find the A.P. - Mathematics

Advertisements
Advertisements

Question

The 19th term of an A.P. is equal to three times its sixth term. If its 9th term is 19, find the A.P.

Sum

Solution

Let a be the first term and d be the common difference.
We know that, nth term = an a + (n − 1)d
According to the question,
a19 = 3a6
⇒ a + (19 − 1)d =  3(a + (6 − 1)d)
⇒ a + 18d =  3a + 15d
⇒ 18d − 15=  3a − a
⇒ 3= 2a
⇒ a =  \[\frac{3}{2}\]  d   .... (1)
Also, a9 = 19
⇒ a + (9 − 1)d = 19
⇒ a + 8d = 19   ....(2)
On substituting the values of (1) in (2), we get

\[\frac{3}{2}\] + 8d = 19
⇒ 3+ 16= 19 × 2
⇒ 19= 38
⇒ = 2
⇒ a = \[\frac{3}{2} \times 2\]  [From (1)]
⇒ a = 3
Thus, the A.P. is 3, 5, 7, 9, .......
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.4 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.4 | Q 39 | Page 26
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×