Advertisements
Advertisements
Question
The ratio of the sums of m and n terms of an A.P. is m2 : n2. Show that the ratio of the mth and nth terms is (2m – 1) : (2n – 1)
Solution
Let a be the first term and d the common difference of the given A.P. Then, the sums of m and n terms are given by
`S_m = \frac { m }{ 2 } [2a + (m – 1) d], and S_n = \frac { n }{ 2 }[2a + (n – 1) d]`
respectively. Then,
`S_m/S_n=m^2/n^2=>(m/2[2a+(m-1)d])/(n/2[2a+(n-1)d])=m^2/n^2`
`=>(2a+(m-1)d)/(2a+(n-1)d)=m/n`
⇒ [2a + (m – 1) d] n = {2a + (n – 1) d} m
⇒ 2a (n – m) = d {(n – 1) m – (m – 1) n}
⇒ 2a (n – m) = d (n – m)
⇒ d = 2a
`T_m/T_n=(a+(m-1)d)/(a+(n-1)d)`
`=\frac{a+(m-1)2a}{a+(n-1)2a}=\frac{2m-1}{2n-1}`
Thus, the ratio of its mth and nth terms is 2m – 1 : 2n – 1.
APPEARS IN
RELATED QUESTIONS
If the ratio of the sum of first n terms of two A.P’s is (7n +1): (4n + 27), find the ratio of their mth terms.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
Find the sum of all natural numbers between 250 and 1000 which are divisible by 9.
Is 184 a term of the AP 3, 7, 11, 15, ….?
Find an AP whose 4th term is 9 and the sum of its 6th and 13th terms is 40.
Choose the correct alternative answer for the following question .
What is the sum of the first 30 natural numbers ?
The 9th term of an A.P. is equal to 6 times its second term. If its 5th term is 22, find the A.P.
Find the sum of n terms of the series \[\left( 4 - \frac{1}{n} \right) + \left( 4 - \frac{2}{n} \right) + \left( 4 - \frac{3}{n} \right) + . . . . . . . . . .\]
If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164?
Write the formula of the sum of first n terms for an A.P.