English

The Coefficient of X − 17 in the Expansion of ( X 4 − 1 X 3 ) 15 is (A) 1365 (B) −1365 (C) 3003 (D) −3003 - Mathematics

Advertisements
Advertisements

Question

The coefficient of  \[x^{- 17}\]  in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] is 

 

Options

  •  1365

  • −1365

  • 3003

  • −3003

     
MCQ

Solution

−1365 

\[\text { Suppose the (r + 1)th term in the given expansion contains the coefficient of } x^{- 17} . \]

\[\text{ Then, we have } : \]

\[ T_{r + 1} = ^{15}{}{C}_r ( x^4 )^{15 - r} \left( \frac{- 1}{x^3} \right)^r \]

` = ( - 1 )^r "^15C_r x^{60 - 4r - 3r} `

\[\text{ For this term to contain }  x^{- 17} , \text{ we must have  : \]

\[60 - 7r = - 17 \]

\[ \Rightarrow 7r = 77\]

\[ \Rightarrow r = 11\]

\[ \therefore \text{ Required coefficient } = ( - 1 )^{11}\]` "^ 15C_{11`=\[- \frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2} = - 1365\]

shaalaa.com
Proof of Binomial Therom by Combination
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.4 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.4 | Q 7 | Page 46
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×