English

If a and B Are the Coefficients of Xn in the Expansion of ( 1 + X ) 2 N and ( 1 + X ) 2 N − 1 Respectively, Find a B - Mathematics

Advertisements
Advertisements

Question

If a and b are the coefficients of xn in the expansion of  \[\left( 1 + x \right)^{2n} \text{ and }  \left( 1 + x \right)^{2n - 1}\]  respectively, find  \[\frac{a}{b}\]

 
 

Solution

Coefficients of xn in the expansion of \[\left( 1 + x \right)^{2n}\]  is  \[{}^{2n} C_n = a\] .

Coefficients of xn in the expansion of \[\left( 1 + x \right)^{2n - 1}\] is  \[{}^{2n - 1} C_n = b\] .

Now,

\[\frac{a}{b} = \frac{{}^{2n} C_n}{{}^{2n - 1} C_n}\]
\[ = \frac{\frac{\left( 2n \right)!}{n!n!}}{\frac{\left( 2n - 1 \right)!}{n!\left( n - 1 \right)!}}\]
\[ = \frac{2n}{n}\]
\[ = 2\]

Hence, 
\[\frac{a}{b} = 2\] .
 
 
  
shaalaa.com
Proof of Binomial Therom by Combination
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.3 | Q 16 | Page 45
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×