English

Write the Total Number of Terms in the Expansion of ( X + a ) 100 + ( X − a ) 100 . - Mathematics

Advertisements
Advertisements

Question

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

Solution

The total number of terms are 101 of which 50 terms get cancelled.

Hence, the total number of terms in the expansion of 

\[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  is 51.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.3 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.3 | Q 17 | Page 46

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×