English

If the expansion of (x-1x2)2n contains a term independent of x, then n is a multiple of 2. - Mathematics

Advertisements
Advertisements

Question

If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

The given expression is `(x - 1/x^2)^(2n)` 

Tr+1 = `""^(2n)C_r (x)^(2n - r) (- 1/x^2)^r`

= `""^(2n)C_r (x)^(2n - r) (-1)^r * 1/x^(2r)`

= `""^(2n)C_r (x)^(2n - r - 2r) (-1)^r`

= `""^(2n)C_r (x)^(2n - 3r) (-1)^r`

For the term independent of x, 2n – 3r = 0

∴ r = `(2n)/3` which not an integer and the expression is not possible to be true

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 146]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 39 | Page 146

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The last two digits of the numbers 3400 are 01.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×