English

The ratio of the coefficient of x15 to the term independent of x in x2+215x is ______. - Mathematics

Advertisements
Advertisements

Question

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.

Options

  • 12:32

  • 1:32

  • 32:12

  • 32:1

MCQ
Fill in the Blanks

Solution

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is 1:32.

Explanation:

Let Tr+1 be the general term of `x^2 + 2^15/x`

So, Tr+1 = `""^15"C"_r  (x^2)^(15 - r)  2^r/x`

= `""^15"C"_r (2)^r  x^(30 - 3r)`  ....(1)

Now, for the coefficient of term containing x15

30 – 3r = 15

i.e., r = 5

Therefore, 15C5 (2)5 is the coefficient of x15   ....(From (1))

To find the term independent of x

Put 30 – 3r = 0

Thus 15C10 210 is the term independent of x ....(From (1))

Now the ratio is `(""^15"C"_5  2^5)/(""^15"C"_10  2^10) = 1/2^5 = 1/32`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 141]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 21 | Page 141

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×