Advertisements
Advertisements
Question
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Options
12:32
1:32
32:12
32:1
Solution
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is 1:32.
Explanation:
Let Tr+1 be the general term of `x^2 + 2^15/x`
So, Tr+1 = `""^15"C"_r (x^2)^(15 - r) 2^r/x`
= `""^15"C"_r (2)^r x^(30 - 3r)` ....(1)
Now, for the coefficient of term containing x15
30 – 3r = 15
i.e., r = 5
Therefore, 15C5 (2)5 is the coefficient of x15 ....(From (1))
To find the term independent of x
Put 30 – 3r = 0
Thus 15C10 210 is the term independent of x ....(From (1))
Now the ratio is `(""^15"C"_5 2^5)/(""^15"C"_10 2^10) = 1/2^5 = 1/32`
APPEARS IN
RELATED QUESTIONS
Find the coefficient of a5b7 in (a – 2b)12
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.