हिंदी

The ratio of the coefficient of x15 to the term independent of x in x2+215x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.

विकल्प

  • 12:32

  • 1:32

  • 32:12

  • 32:1

MCQ
रिक्त स्थान भरें

उत्तर

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is 1:32.

Explanation:

Let Tr+1 be the general term of `x^2 + 2^15/x`

So, Tr+1 = `""^15"C"_r  (x^2)^(15 - r)  2^r/x`

= `""^15"C"_r (2)^r  x^(30 - 3r)`  ....(1)

Now, for the coefficient of term containing x15

30 – 3r = 15

i.e., r = 5

Therefore, 15C5 (2)5 is the coefficient of x15   ....(From (1))

To find the term independent of x

Put 30 – 3r = 0

Thus 15C10 210 is the term independent of x ....(From (1))

Now the ratio is `(""^15"C"_5  2^5)/(""^15"C"_10  2^10) = 1/2^5 = 1/32`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 21 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coefficient of a5b7 in (a – 2b)12


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


The last two digits of the numbers 3400 are 01.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×