हिंदी

The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.

विकल्प

  • `((n + 1)(n + 2))/2`

  • n + 1

  • n + 2

  • (n + 1)n

MCQ
रिक्त स्थान भरें

उत्तर

The number of terms in the expansion of (a + b + c)n, where n ∈ N is `((n + 1)(n + 2))/2`.

Explanation:

We have (a + b + c)n = [a + (b + c)]n

= an + nC1 an – 1 (b + c)1 + nC2 an – 2 (b + c)2 + ... + nCn (b + c)n

Further, expanding each term of R.H.S., we note that

First term consist of 1 term.

Second term on simplification gives 2 terms.

Third term on expansion gives 3 terms.

Similarly, fourth term on expansion gives 4 terms and so on.

The total number of terms = 1 + 2 + 3 + ... + (n + 1)

= `((n + 1)(n + 2))/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 20 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×