Advertisements
Advertisements
प्रश्न
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
उत्तर
We have,
\[2^{4n + 4} - 15n - 16 = 2^{4\left( n + 1 \right)} - 15n - 16\]
\[ = {16}^{n + 1} - 15n - 16\]
\[ = \left( 1 + 15 \right)^{n + 1} - 15n - 16\]
\[ =^{n + 1} C_0 {15}^0 +^{n + 1} C_1 {15}^1 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]
\[ = 1 + (n + 1)15 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]
\[ = 1 + 15n + 15 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]
\[ =^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} \]
\[ = {15}^2 \left( {}^{n + 1} C_2 + . . . +^{n + 1} C_{n + 1} {15}^{n - 1} \right)\]
\[ = 225\left( {}^{n + 1} C_2 + . . . +^{n + 1} C_{n + 1} {15}^{n - 1} \right)\]
Thus,
\[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate the following:
(99)5
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Which of the following is larger? 9950 + 10050 or 10150
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.