Advertisements
Advertisements
प्रश्न
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
उत्तर
Given expression is (x + a)n
(x + a)n = nC0xn a0 + nC1xn–1a + nC2xn–2a2 + nC3xn–3a3 + … + nCnan
Sum of odd terms,
O = `""^n"C"_0 x^n + ""^n"C"_2 x^(n - 2)a^2 + ""^n"C"+4x^(n - 4)a^4` + ...
And the sum of even terms,
E = `""^n"C"_1x^(n - 1) * a + ""^n"C"_3x^(n - 3)a^3 + ""^n"C"_5x^(n - 5)a^5` + ...
Now (x + a)n = O + E ......(i)
Similarly (x – a)n = O – E .....(ii)
Multiplying equation (i) and equation (ii), we get,
(x + a)n (x – a)n = (O + E)(O – E)
⇒ (x2 – a2)n = O2 – E2
Hence O2 – E2 = (x2 – a2)n
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using binomial theorem, evaluate f the following:
(101)4
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.