हिंदी

The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.

विकल्प

  • 3rd and 4th

  • 4th and 5th

  • 5th and 6th

  • 6th and 7th

MCQ
रिक्त स्थान भरें

उत्तर

The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are 5th and 6th.

Explanation:

Let rth and (r + 1)th be two successive terms in the expansion (1 + x)24

∴ `"T"_(r + 1) = ""^24"C"_r * x^r`

`"T"_(r + 2) = "T"_(r + 1 + 1) = ""^24"C"_(r + 1) x^(r + 1)`

 We have `(""^24"C"_r)/(""^24"C"_(r + 1)) = 1/4`

⇒ `((24!)/(r!(24 - r)!))/((24!)/((r + 1)!(24 - r - 1)!)) = 1/4`

⇒ `(24!)/(r!(24 - r)!) xx ((r - 1)!(24 - r - 1)!)/(24!) = 1/4`

⇒ `((r + 1) * r!(24 - r - 1)!)/(r!(24 - r)(24 - r - 1)!) = 1/4`

⇒ `(r + 1)/(24 - r) = 1/4`

⇒ 4r + 4 = 24 – r

⇒ 5r = 20

⇒ r = 4

∴ T4+1 = T5 and T4+2 = T6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 20 | पृष्ठ १४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate of the following:
(102)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Expand the following (1 – x + x2)4 


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×