Advertisements
Advertisements
प्रश्न
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
विकल्प
`(3^"n" + 1)/2`
`(3^"n" - 1)/2`
`(1 - 3^"n")/2`
`3^"n" + 1/2`
उत्तर
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals `(3^"n" + 1)/2`.
Explanation:
Putting x = 1 and –1 in
(1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n
We get 1 = a0 + a1 + a2 + a3 + ... + a2n ......(1)
And 3n = a0 – a1 + a2 – a3 + ... + a2n ......(2)
Adding (1) and (2), we get
3n + 1 = 2(a0 + a2 + a4 + ... + a2n)
Therefore a0 + a2 + a4 + ... + a2n = `(3^"n" + 1)/2`
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate f the following:
(101)4
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.