English

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______. - Mathematics

Advertisements
Advertisements

Question

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.

Options

  • `(3^"n" + 1)/2`

  • `(3^"n" - 1)/2`

  • `(1 - 3^"n")/2`

  • `3^"n" + 1/2`

MCQ
Fill in the Blanks

Solution

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals `(3^"n" + 1)/2`.

Explanation:

Putting x = 1 and –1 in

(1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n 

We get 1 = a0 + a1 + a2 + a3 + ... + a2n   ......(1)

And 3n = a0 – a1 + a2 – a3 + ... + a2n    ......(2)

Adding (1) and (2), we get

3n + 1 = 2(a0 + a2 + a4 + ... + a2n)

Therefore a0 + a2 + a4 + ... + a2n = `(3^"n" + 1)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 140]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 18 | Page 140

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: `(x + 1/x)^6`


Using binomial theorem, evaluate f the following:

(101)4


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×