English

Find the Value of (1.01)10 + (1 − 0.01)10 Correct to 7 Places of Decimal. - Mathematics

Advertisements
Advertisements

Question

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Solution

\[(1 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = (1 + 0 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = 2[ ^{10}{}{C}_0 \times (0 . 01 )^0 +^{10}{}{C}_2 \times (0 . 01 )^2 +^{10}{}{C}_4 \times (0 . 01 )^4 +^{10}{}{C}_6 \times (0 . 01 )^6 + ^{10}{}{C}_8 \times (0 . 01 )^8 + ^{10}{}{C}_{10} \times (0 . 01 )^{10} ]\]

\[ = 2\left( 1 + 45 \times 0 . 0001 + 210 \times 0 . 00000001 + . . . \right) \]

\[ = 2\left( 1 + 0 . 0045 + 0 . 00000210 + . . . \right)\]

\[ = 2 . 0090042 + . . .\]

Hence, the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of the decimal is 2.0090042

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.1 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 11 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


The number of terms in the expansion of (x + y + z)n ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×