Advertisements
Advertisements
Question
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Solution
Let Tr+1 contain x10.
Then Tr+1 = `""^18"C"_r (x^2)^(18 - r) (-2^r)/x`
= `""^18"C"_r x^(36 - 2r) (-1)^r * 2^r x^(-r)`
= `(-1)^r 2^r ""^18"C"_r x^(36 - 3r)`
Thus, 36 – 3r = 10
i.e., r = `36/3`
Since r is a fraction, the given expansion cannot have a term containing x10.
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find an approximation of (0.99)5 using the first three terms of its expansion.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Expand the following (1 – x + x2)4
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.