Advertisements
Advertisements
Question
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
Solution
Given expression = (1 + x )2n
Coefficient of second term = 2nC1
Coefficient of third term = 2nC2
And coefficient of fourth term = 2nC3
As the given condition
2nC1. 2nC2 and 2nC3 are in A.P.
∴ 2nC2 – 2nC1 = 2nC3 – 2nC2
⇒ `2 * ""^(2n)"C"_2 = ""^(2n)"C"_1 + ""^(2n)"C"_3`
⇒ `2 * (2n!)/(2!(2n - 2)!) = (2n!)/((2n - 1)!) + (2n!)/(3!(2n - 3)!)`
⇒ `2[(2n(2n - 1)(2n - 2)!)/(2 xx 1 xx (2n - 2)!)] = (2n(2n - 1)!)/((2n - 1)!) + (2n(2n - 1)(2n - 2)(2n - 3)!)/(3 xx 2 xx 1 xx (2n - 3)!)`
⇒ n(2n – 1) = `n + (n(2n - 1)(2n - 2))/6`
⇒ 2n – 1 = `1 + ((2n - 1)(2n - 2))/6`
⇒ 12n – 6 = 6 + 4n2 – 4n – 2n + 2
⇒ 12n – 12 = 4n2 – 6n + 2
⇒ 4n2 – 6n – 12n + 2 + 12 = 0
⇒ 4n2 – 18n + 14 = 0
⇒ 2n2 – 9n + 7 = 0
Hence proved.
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x + 1/x)^6`
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.