English

Find (a + b)4 – (a – b)4. Hence, evaluate (3+2)4-(3-2)4 - Mathematics

Advertisements
Advertisements

Question

Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`

Sum

Solution

Using Binomial Theorem, the expressions, (a + b)4 and (a – b)4, can be expanded as

`(a + b)^4  =  ^4C_0  a^4  +  ^4C_1  a^3  b  +  ^4C_2   a^2b^2  +  ^4C_3  ab^3  + ^4C_4  b^4`

(a - b)4 = 4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4b

∴ `(a + b)^4 - (a - b)^4 =  ^4C_0  a^4  +  ^4C_1  a^3  b  +  ^4C_2   a^2b^2  +  ^4C_3  ab^3  +  ^4C_4  b^4`

[4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4 b4]

2 (4C1a3b + 4C3ab3) = 2(4a3b + 4ab3)

= 8ab (a2 + b2)

In this, by substituting `a = sqrt 3 , b = sqrt 2`

`(sqrt3  +  sqrt2)^4  - (sqrt3  -  sqrt2)^4`

= `8sqrt3. sqrt2 [(sqrt3)^2  + (sqrt2)^2]`

= `8sqrt6 (3 + 2)  = 40sqrt6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise 8.1 [Page 167]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise 8.1 | Q 11 | Page 167
NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise 8.1 | Q 11 | Page 167

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x/3 + 1/x)^5`


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×