Advertisements
Advertisements
Question
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Solution
Using Binomial Theorem, the expressions, (a + b)4 and (a – b)4, can be expanded as
`(a + b)^4 = ^4C_0 a^4 + ^4C_1 a^3 b + ^4C_2 a^2b^2 + ^4C_3 ab^3 + ^4C_4 b^4`
(a - b)4 = 4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4b4
∴ `(a + b)^4 - (a - b)^4 = ^4C_0 a^4 + ^4C_1 a^3 b + ^4C_2 a^2b^2 + ^4C_3 ab^3 + ^4C_4 b^4`
[4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4 b4]
2 (4C1a3b + 4C3ab3) = 2(4a3b + 4ab3)
= 8ab (a2 + b2)
In this, by substituting `a = sqrt 3 , b = sqrt 2`
`(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
= `8sqrt3. sqrt2 [(sqrt3)^2 + (sqrt2)^2]`
= `8sqrt6 (3 + 2) = 40sqrt6`
APPEARS IN
RELATED QUESTIONS
Expand the expression: (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x/3 + 1/x)^5`
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.