Advertisements
Advertisements
Question
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Solution
Since rth term from the end in the expansion of (a + b)n is (n – r + 2)th term from the beginning.
Therefore 4th term from the end is 9 – 4 + 2
i.e., 7th term from the beginning
Which is given by T7 = `""^9"C"_6 (x^3/2) ((-2)/x^2)^6`
= `""^9"C"_3 x^9/8 * 64/x^12`
= `(9 xx 8 xx 7)/(3 xx 2 xx 1) xx 64/x^3`
= `672/x^3`
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate of the following:
(102)5
Using binomial theorem, evaluate f the following:
(101)4
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.