English

Find the 4th term from the end in the expansion of (x32-2x2)9 - Mathematics

Advertisements
Advertisements

Question

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`

Sum

Solution

Since rth term from the end in the expansion of (a + b)n is (n – r + 2)th term from the beginning.

Therefore 4th term from the end is 9 – 4 + 2

i.e., 7th term from the beginning

Which is given by T7 = `""^9"C"_6 (x^3/2) ((-2)/x^2)^6`

= `""^9"C"_3 x^9/8 * 64/x^12`

= `(9 xx 8 xx 7)/(3 xx 2 xx 1) xx 64/x^3`

= `672/x^3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 132]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 3 | Page 132

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×