हिंदी

Find the 4th term from the end in the expansion of (x32-2x2)9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`

योग

उत्तर

Since rth term from the end in the expansion of (a + b)n is (n – r + 2)th term from the beginning.

Therefore 4th term from the end is 9 – 4 + 2

i.e., 7th term from the beginning

Which is given by T7 = `""^9"C"_6 (x^3/2) ((-2)/x^2)^6`

= `""^9"C"_3 x^9/8 * 64/x^12`

= `(9 xx 8 xx 7)/(3 xx 2 xx 1) xx 64/x^3`

= `672/x^3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 3 | पृष्ठ १३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Expand the following (1 – x + x2)4 


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×