Advertisements
Advertisements
प्रश्न
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
उत्तर
Since rth term from the end in the expansion of (a + b)n is (n – r + 2)th term from the beginning.
Therefore 4th term from the end is 9 – 4 + 2
i.e., 7th term from the beginning
Which is given by T7 = `""^9"C"_6 (x^3/2) ((-2)/x^2)^6`
= `""^9"C"_3 x^9/8 * 64/x^12`
= `(9 xx 8 xx 7)/(3 xx 2 xx 1) xx 64/x^3`
= `672/x^3`
APPEARS IN
संबंधित प्रश्न
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, evaluate of the following:
(102)5
Using binomial theorem, evaluate f the following:
(101)4
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.