हिंदी

Which of the following is larger? 9950 + 10050 or 10150 - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following is larger? 9950 + 10050  or 10150

योग

उत्तर

We have (101)50 = (100 + 1)50

= `100^50 + 50(100)^49 + (50*49)/(2*1) (100)^48 + (50*49*48)/(3*2*1) (100)^47 +` ......(1)

Similarly 9950 = (100 – 1)50

= `100^50 - 50 * 100^59 + (50*49)/(2*1) (100)^48 - (50*49*48)/(3*2*1) (100)^47 +`  ....(2)

Subtracting (2) from (1), we get

10150 – 9950 = `2  50*(100)^49 + (50*49*48)/(3*2*1) 100^47 +`  ....

⇒ 10150 – 9950 = `100^50 + 2  (50*49*48)/(3*2*1)  10^47 +`  ....

⇒ 10150 – 9950 > 10050

Hence 10150 > 9950 + 10050

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 13 | पृष्ठ १३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×