Advertisements
Advertisements
प्रश्न
Which of the following is larger? 9950 + 10050 or 10150
उत्तर
We have (101)50 = (100 + 1)50
= `100^50 + 50(100)^49 + (50*49)/(2*1) (100)^48 + (50*49*48)/(3*2*1) (100)^47 +` ......(1)
Similarly 9950 = (100 – 1)50
= `100^50 - 50 * 100^59 + (50*49)/(2*1) (100)^48 - (50*49*48)/(3*2*1) (100)^47 +` ....(2)
Subtracting (2) from (1), we get
10150 – 9950 = `2 50*(100)^49 + (50*49*48)/(3*2*1) 100^47 +` ....
⇒ 10150 – 9950 = `100^50 + 2 (50*49*48)/(3*2*1) 10^47 +` ....
⇒ 10150 – 9950 > 10050
Hence 10150 > 9950 + 10050
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.